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Abstract

Fuzzy set theory has been shown to be an e�ective tool to overcome the computational di�culties encountered in solving
large multiple level programming problems (Shih et al., 1996). In this paper, compensatory operators are introduced for
adjusting the decision making process between the di�erent levels and also between the decision makers of the same level.
After a brief consideration of the bi-level and three level systems, the large decentralized organizations with both equal
and unequal goals are investigated. Various numerical examples are given to compare the in
uences of compensation and
to illustrate the approaches. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multiple level programming techniques [1–6,8,9,12–15,19–23] are ideal approaches for solving large decen-
tralized planning problems with multiple decision makers (DMs) such as the frequently encountered hierarchi-
cal organizations of large companies or the decentralized systems of nonpro�t and government organizations.
The approach explicitly assigns each DM a unique objective, a set of decision variables, and a set of common
constraints that a�ect all DMs. But, unfortunately, the multiple level programming problems (MLPP) are dif-
�cult to solve and have been proved to be NP-hard. Some existing numerical techniques such as the extreme
point search approach, the procedure based on the Karush–Kuhn–Tucker condition, and the descent methods
[5,6,9,13] are e�ective only for solving very simple problems.
To overcome the above mentioned di�culties, Shih et al. [19] developed a fairly e�ective fuzzy approach

by using the concept of tolerance membership functions and multiple objective decision making. The idea is to
use the basic fuzziness and vagueness nature of such large hierarchy systems to make the complexity tractable.
The upper level de�nes his or her tolerances by the use of membership function which constrains the lower
level DM’ s feasible space. The resulting iterative procedure, instead of the usually used extreme point search,
relies on the change of membership functions which expresses the degree of satisfaction of the solutions to
both the upper- and the lower-level DMs. It should be emphasized that the approach explores the inherent
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vagueness of the system and thus generates no signi�cant additional constraints. In fact it signi�cantly reduces
the amount of computation required for large multiple level decentralized programming problems (MLDPP).
However, the earlier work [19] used the non-compensatory max–min aggregation operator, which is not

the usual practice for solving real-world decision making problems. Managerial decisions almost always allow
some compensation between di�erent achievements so that a balance of the objectives can be obtained.
Furthermore, in real world applications, the objectives of the DMs in the same hierarchy level can also be
di�erent. Thus, in the present approach, multiple decision units in the same level can have unequal objectives.
In the following sections, the compensatory fuzzy operators are �rst considered. By using these compensatory

operators, the solution procedures for the various types of multiple level decision problems are formulated.
Numerical examples are solved to illustrate the approaches.

2. Compensatory fuzzy aggregation operators

There exist various fuzzy aggregation operators. Max–min operator simulates the classic logical “exclusive
or” and “and”, and thus are the earliest aggregator proposed [7]. Zimmermann and Zysno [28,29] studied
empirically the operators “min”, “product”, “max”, “weighted geometric mean”, and “
-operator”. They con-
cluded that the “
-operator” is especially suited for human decision making. Various other investigators also
proposed and studied various compensatory and non-compensatory operators (see, e.g. [10,11,16,25]). More
recently, Yager [26] introduced the ordered weighted averaging operators.
Although Zimmermann and Zysno [28] have shown that the Hamacher 
-operator predicts human judgment

very well, but it is a nonlinear operator and increases the computational di�culties tremendously. Based on
the 
-operator, Werners [24] introduced the following compensatory fuzzy “or” and “and” operators which
are the convex combinations of max and arithmetical mean, and min and arithmetical mean, respectively:

�or = 
 maxi(�i) + (1− 
)
(∑

i

�i

)/
m;

�and = 
 mini(�i) + (1− 
)
(∑

i

�i

)/
m;

(1)

where 06�i61; i=1; 2; : : : ; m, and the magnitude of 
∈ [0; 1] represents the grade of compensation.
Obviously, when 
=1, Eq. (1) reduces to �or =max and �and =min. The combination of these two operators

forms the generalized “or” and “and” operators. For illustrative purposes, the fuzzy “and” operator will be
used in this investigation and Eq. (1) is further simpli�ed in the following for multi-level decision making
problems:
Let �=mini(�i), then the fuzzy “and” operator becomes:

�and = 
�+ (1− 
)
(∑

i

�i

)/
m = 
�+ (1− 
)

∑
i

((�i�) + �)=m

= 
�+ (1− 
)m�=m+ (1− 
)
∑
i

(�i − �)=m = �+ (1− 
)
∑
i

(�i − �)=m;

06�i61; i=1; 2; : : : ; m; 06�61; 06
61:

After letting �i= �i − �, the above expression reduces to
�and = �+ (1− 
)

∑
i

�i=m; (2)
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where m represents the number of the fuzzy membership functions under consideration. For multi-level decision
making problems, these fuzzy membership functions are the tolerances of the decisions and the objectives of
the DMs in the various levels.

3. Compensation in bi-level programming problems

The bi-level programming problem (BLPP) has two DMs at two di�erent hierarchical levels and is similar
to the static Stackelberg game – a special case of a two-person, non-zero sum, non-cooperative game, with
full information. This BLPP can be represented by the following equations, where the top level has control
over the vector x1 and the bottom level has control over the vector x2 [22]:

Max
x1

f1(x1; x2)= cT11x1 + c
T
12x2 (upper level) (3)

where x2 solves

Max
x2

f2(x1; x2)= cT21x1 + c
T
22 x2 (lower level) (4)

s:t: (x1; x2)∈F2 = {(x1; x2)|A1x1 + A2x26b; and x1; x2¿0};
where c11; c12; c21; c22, and b are linear vectors and A1 and A2 are matrices. The functions f1 and f2 for
the two decision makers are assumed to be linear and bounded.
For a given x1, let G(x) denote the set of optimal solutions to the following lower-level problem:

Max
x2∈ F1(x1)

f∗
2 (x2)= c

T
22x2;

where F1(x1)= {x2 |A2x26b − A1x1} represents the upper-level DM’s feasible decision space. The set of
rational reactions f2 over F2 can also be de�ned as

Sf2(F2)= {(x1; x2) | (x1; x2)∈F2 and x1 ∈G(x1)}:
In the earlier paper [19], the above BLPP was solved by the use of the max–min fuzzy operator. Following
Zimmermann [27], the tolerances of the DMs are treated as fuzzy membership functions. The following
auxiliary linear programming problem can be obtained:

Max �

s:t: A1x1 + A2x26b;

�f1(f1(x))¿�;

�x1(x1)¿�I ;

�f2(f2(x))¿�;

x1; x2¿0;

�∈ [0; 1]
or

Max �

s:t: A1x1 + A2x26b;
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�f1(f1(x))= [f1(x)− f′
1]=[f

T
1 − f1′]¿�;

[(xT1 + p1)− x1]=p1¿�I ;
[x1 − (xT1 − p1)]=p1¿�I ;
�f2(f2(x))= [f2(x)− f′

2]=[f
T
2 − f′

2]¿�;

x1; x2¿0;

�∈ [0; 1]; (5)

where I is a column vector with the same dimension as x1 and with all its elements equal to 1. xT1 is the
preferred value of x1 and p1 is the tolerance of the two sides of x1. fT1 and f′

1 are the upper and lower
bounds of f1, respectively.
If we use the compensatory aggregator, Eq. (2), Eq. (5) can be reformulated as

Max �and = �+ (1− 
)(�1 + �2 + �3)=3
s:t: A1x1 + A2x26b;

x1; x2¿0;

�f1(f1(x))= [f1(x)− f′
1]=[f

T
1 − f′

1]¿(�+ �1);

[(xT1 + p1)− x1]=p1¿(�+ �2)I ;
[x1 − (xT1 − p1)]=p1¿(�+ �2)I ;
�f2(f2(x))= [f2(x)− f′

2]=[f
T
2 − f′

2]¿(�+ �3);

�+ �i61; i=1; 2; 3


∈ [0; 1];
�; �1; �2; and �3 ∈ [0; 1];

(6)

where 
 represents the grade of compensation.
The three membership functions, which are implicitly represented by �1, �2 and �3 in Eq. (6), represent

the tolerances allowed for the upper level decision variable x1, the upper level goal f1, and the lower level
goal f2, respectively. Thus, expression (6) is 
exible and compensatory. The 
exibility depends on the range
of the decision information o�ered by the DM and the compensation represents a balance between the goals
of the two levels and the decision variable of the upper level. This transformed model is linear and thus can
be solved easily. Furthermore, an interactive iterative procedure can be formulated to obtain better tolerances
to satisfy both the DMs. In this way the degree of satisfaction, which is represented by the membership
functions, can be adjusted according to the preference of the DMs.
Let us consider the following example used in the earlier paper [19]:

Example 1. A bi-level programming problem for compensating between export balance and pro�t.

Max
x1
f1 = 2x1 − x2; (balancing export trade; upper-level)
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where x2 solves

Max
x2

f2 = x1 + 2x2 (pro�t; lower-level)

s:t: 3x1 − 5x2615 (capacity)

3x1 − x2621 (management)

3x1 + x2627 (space)

3x1 + 4x2645 (material)

x1 + 3x2630 (labor hours)

x1; x2¿0:

In the earlier approach, the optimal solutions for the objective functions were �rst obtained by solving
Eqs. (3) and (4) individually with the above constraint set. The results obtained were: xU = (xU1 ; x

U
2 )= (7:5; 1:5)

for fU1 = 13:5 and x
L = (xL1 ; x

L
2)= (3; 9) for f

L
2 = 21. These results were used as the reference set. Thus let

fU1 = 13:5 and f
′
2 = 10:5. The meaningful value for f

′
1 cannot be −3 because minus values have no meaning

and cannot be allowed, thus set f1 = 0. Let the upper-level DM’s control decision x1 be around 7.5 with
the negative and positive-sides tolerances of 4.5 and 0.5, respectively. The membership functions for �x1(•),
�f1(•), and �f2(•) can now be obtained based on these assumed numerical values. The lower-level auxiliary
model then becomes

Max �

s:t: x∈X ;
�f1(f1(x))=f1=(13:5− 0)¿�;
�x1(x1)= (x1 − 4:5)=(7:5− 4:5)¿�;
�x1(x1)= (8− x1)=(8− 7:5)¿�;
�f2(f2(x))= (f2 − 10:5)=(21− 10:5)¿�;
�∈ [0; 1]

where X represents the original crisp constraint set.
Using Eq. (6) and the numerical values obtained above, the desired compensatory model can be obtained as

Max �and = �+ (1− 
)(�1 + �2 + �3)=3
s:t: x∈X ;

(f1 − 0)=(13:5− 0)¿(�+ �1);
(x1 − 4:5)=(7:5− 4:5)¿(�+ �2);
(8− x1)=(8− 7:5)¿(�+ �2);
(f2 − 10:5)=(21− 10:5)¿(�+ �3);
�; �1; �2; and �3 ∈ [0; 1];

where 
 ∈ [0; 1] represents the grade of compensation.
This compensatory linear programming model can be solved easily by the use of LINDO [18]. The compro-

mise solution is f ∗=(f∗
1 ; f

∗
2 )= (9:28; 17:72) at x

∗=(x∗1 ; x
∗
2 )= (7:26; 5:23) with a total degree of satisfaction
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Table 1
Results based on the degree of compensation of Example 1

Degree of Degree of satisfaction Solution Objective Note
compensation 
 �and (�) (x1; x2) (f1; f2)

0 0.78 (0.57) (7:5; 4:5) (10:5; 16:5)
0.1 0.77 (0.69) (7:26; 5:23) (9:28; 17:72) Change of the solution set
0.2 0.76 (0.69) (7:26; 5:23) (9:28; 17:72)
0.3 0.75 (0.69) (7:26; 5:23) (9:28; 17:72)
0.4 0.74 (0.69) (7:26; 5:23) (9:28; 17:72)
0.5 0.73 (0.69) (7:26; 5:23) (9:28; 17:72)
0.6 0.72 (0.69) (7:26; 5:23) (9:28; 17:72)
0.7 0.71 (0.69) (7:26; 5:23) (9:28; 17:72)
0.8 0.70 (0.69) (7:26; 5:23) (9:28; 17:72)
0.9 0.70 (0.69) (7:26; 5:23) (9:28; 17:72)
1 0.69 (0.69) (7:26; 5:23) (9:28; 17:72)

Note: (1) Werners’ fuzzy “and” operator is �and = 
mini(�i) + (1− 
)(�i �i)=m; 06�61; 06
61, with m membership functions,
i=1; : : : ; m. Here m=3 for the bi-level programming problem of Example 1.
(2) When 
¿0:1, the solution is changed from one set to another set.
(3) � is the degree of satisfaction for non-compensatory operation, i.e. max–min operation. The compensatory solution and non-

compensatory solution are equal when 
=1.

�and = 0:73 at 
=0:5. Compared to �=0:69 with the same objectives f ∗ and decisions x∗ in Shih et al. [19],
the degree of satisfaction has been improved after compensation. To investigate the e�ect of di�erent degrees
of compensations, 11 cases with di�erent values of compensations were solved and the results are listed in
Table 1. For comparison purposes, it is interesting to note that the solution for the non-fuzzy (crisp) results
are x∗=(8; 3) and f ∗=(13; 14) and the degree of satisfaction for upper-level and lower-level DMs are 0
and 0.33, respectively.

4. Compensation in three-level programming problems

According to the previous discussions, the three level programming problem (TLPP) can be de�ned as a
three-person, non-zero sum game with perfect information in which each player moves sequentially [3]. The
TLPP can be represented as

Max
x1

f1(x1; x2; x3)= cT11x1 + c
T
12x2 + c

T
13x3; (1st level) (7)

where x2; x3 solve

Max
x2
f2 (x1; x2; x3)= cT21x1 + c

T
22x2 + c

T
23x3; (2nd level) (8)

where x3 solves

Max
x3

f3(x1; x2; x3)= cT31x1 + c
T
32x2 + c

T
33x3; (3rd level) (9)

s:t: A1x1 + A2x2 + A3x36b;

x1; x2; x3¿0;

where x1; x2, and x3 are the control or decision variables for the 1st, 2nd, and 3rd levels, respectively.
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Although both the vertex enumeration [21] and the KKT condition [1] approaches have been modi�ed to
solve the TLPP problems, these numerical approaches are very ine�cient.
The supervised search procedure for the fuzzy TLPP problems are carried out from top to bottom [14].

The top level or the �rst level DM provides his or her preferred ranges of f1 and x1 to the second level
and the second level solves his or her problem with this additional preference information from the top level.
The results obtained by the second level are presented to the top level. If the results are not acceptable,
some modi�cations of the membership functions are made. This process can be continued until a satisfactory
solution is reached. The interactions of the third level with the top and the second levels can be handled
essentially in the same manner.
The auxiliary model of the fuzzy approach for the TLPP can be represented as:

Max �

s:t: A1x1 + A2x2 + A3x36b;

x1; x2; x3¿0;

�f1(f1(x))¿�;

�x1(x1)¿�I ;

�f2(f2(x))¿�;

�x2(x2)¿�I ;

�f3(f3(x))¿�;

�∈ [0; 1]:
or

Max �

s:t: A1x1 + A2x2 + A3x36b;

x1; x2; x3¿0;

�f1(f1(x))= [f1(x)− f′
1]=[f

T
1 − f′

1]¿�;

[(xT1 + p1)− x1]=p1¿�I ;
[x1 − (xT1 − p1)]=p1¿�I ;
�f2(f2(x))= [f2(x)− f′

2]=[f
T
2 − f′

2]¿�;

[(xT2 + p2)− x2]=p2¿�I ;
[x2 − (xT2 − p2)]=p2¿�I ;

�f3(f3(x))= [f3(x)− f′
3]=[f

T
3 − f′

3]¿�; (10)

where the nomenclature is the same as that used in the bi-level problem except with the addition of the third
level
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By using Eq. (2), the above expression can be transformed into the following compensatory form:

Max �and = �+ (1− 
)(�1 + �2 + �3 + �4 + �5)=5
s:t: A1x1 + A2x2 + A3x36b;

x1; x2; x3¿0;

�f1(f1(x))= [f1(x)− f′
1]=[f

T
1 − f′

1]¿(�+ �1);

[(xT1 + p1)− x1]=p1¿(�+ �2)I ;
[x1 − (xT1 − p1)]=p1¿(�+ �2)I ;
�f2(f2(x))= [f2(x)− f′

2]=[f
T
2 − f′

2]¿(�+ �3);

[(xT2 + p2)− x2]=p2¿(�+ �4)I ;
[x2 − (xT2 − p2)]=p2¿(�+ �4)I ;
�f3(f3(x))= [f3(x)− f′

3]=[f
T
3 − f′

3]¿(�+ �5);

�+ �i61; i=1; 2; 3; 4; 5

�; �1; �2; �3; �4; and �5 ∈ [0; 1]: (11)

Example 2. Consider the following TLPP [1]:

Max
x1

f1 = 7x1 + 3x2 − 4x3;

where x2; x3 solve

Max
x2

f2 = x2;

where x3 solves

Max
x3

f3 = x3
s:t: x1 + x2 + x363; x1 + x2 − x361;

x1 + x2 + x3¿1; −x1 + x2 + x361;
x360:5;

x1; x2; and x3¿0:

The individual solutions for each level are f1T1 = 8:5 at x1T1 = (1:5; 0; 0:5); f
1T
2 = 1 at x1T2 = (0; 1; 0) or

(0; 1; 0:5), and f1T3 = 0:5 at x1T3 = (1:5; 0; 0:5); (0:5; 1; 0:5), or (0; 0:5; 0:5) (see Table 2). In addition, f
′
1 = 0

instead of −0:5 and f′
2 =f

′
3 = 0. Remember that only positive values are meaningful values. Also, assume that

the control decision x1 should be around 1.5 with 1.5 for tolerances on both positive and negative sides. The
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Table 2
Individual solution for each objective at each level of Example 2

Vertex Objective for each level Note

f1 f2 f3

Reference data for the �rst problem:
A(1:5; 0; 0:5) 8:5∗ 0 0.5# Level 1 optimum
B(0; 1; 0) 3 1∗ 0# Level 2 optimum
C(0:5; 1; 0:5) 4.5 1∗ 0.5# Alternative optimum of level 2

Reference data for the second problem:
D(0:9; 0:6; 0:5) 6.18 0.58 0.5# Compromise optimum of level 1 and level 2
E(1:5; 0; 0:5) 8.5 0 0:5∗ Level 3 optimum
F(0:5; 1; 0:5) 4.5 1 0:5∗ Alternative optimum of level 3
G(0; 0:5; 0:5) −0.5 0.5 0:5∗ Alternative optimum of level 3

Modi�ed fuzzy range:
n=1 n=2 n=3

fn [0; 6:1) [0; 0:6) [0; 0:5) Objective
xn [0; 0:9; 1:8] [0; 0:6; 2] — Decision variables

Note: (1) f1; f2, and f3 represents the objective of the �rst-level, the second level, and third level, respectively.
(2) f3 values marked with “′′” are only for reference there. These values will not use for the process.
(3) fn values marked with “#” represent the optimal solution corresponding to the related level n.
(4) Modi�ed fuzzy ranges are based on the solutions of the second problem. We choose one-sided fuzzy numbers for objectives and

triangular fuzzy numbers for decision variables.

compensatory auxiliary problem for the second level can be represented as

Max �+ (1− 
)(�1 + �2 + �3)=3
s:t: x∈X ;

7x1 + 3x2 − 4x3¿8:5(�+ �1);
x1¿1:5(�+ �2);

x1 + 1:5(�+ �2)63;

f2 = x2¿(�+ �3);

�+ �i61; i=1; 2; 3;

�; �1; �2; �3 ∈ [0; 1]:

where X is the constraint set of the original problem and 
 is the grade of compensation.
The compromise solutions for the �rst and second levels are: the degree of satisfaction is �and = 0:62, the

objectives are f 2T = (f2T1 ; f
2T
2 )= (6:1; 0:6) at decisions x

2T = (x2T1 ; x
2T
2 ; x

2T
3 )= (0:9; 0:6; 0:5) with 
=0:5. As-

sume that the top two levels are satis�ed with this solution, we then can solve the bottom level or the third level
by using the results of the top two levels. Since some information has been compromised, some modi�cations
are needed to obtain the optimum for the entire organization. Let us modify the decision variables and goals by
the following triangular fuzzy numbers: x1 = [0; 0:9; 1:8] and x2 = [0; 0:6; 2], and let f1 = [0; 6:1); f2 = [0; 0:6)
and f3 = [0; 0:5) (see Table 2).
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The third-level problem can be considered as a hierarchical system. The auxiliary problem of the third level
is thus formulated as

Max �and = �+ (1− 
)(�1 + �2 + �3 + �4 + �5)=5
s:t: x∈X ;

7x1 + 3x2 − 4x1¿6:1(�+ �1);
x1¿0:9(�+ �2);

x1 + 0:9(�+ �2)61:8;

f2 = x2¿0:6(�+ �3);

x2 + (�+ �4)62;

f3 = x3¿0:5(�+ �5);

�+ �i61; i=1; 2; 3; 4; 5

�; �1; �2; �3; �4; �5 ∈ [0; 1]:

The solution of the third-level auxiliary problem is f ∗=(f∗
1 ; f

∗
2 ; f

∗
3 )= (6:1; 0:6; 0:5) at decisions

x∗=(x∗1 ; x
∗
2 ; x

∗
3 )= (0:9; 0:6; 0:5) and 
=0:5 with a satisfaction level of 1.0, in other words, full satisfaction

for all DMs. The crisp solution is f ∗=(4:5; 1; 0:5) at x∗=(0:5; 1; 0:5) with satisfaction level: (1:0; 0; 1:0).
Obviously, the above procedure of compensatory fuzzy approach can be extended easily to kth level pro-

gramming problems, with k¿4. In this case, we must �rst solve (k−1) auxiliary problems. Furthermore, if the
solution obtained is not satisfactory, some interactive iteration will be needed to obtain an overall satisfaction.

5. Bi-level decentralized programming problem with equally important goals

A bi-level decentralized programming problem (BLDPP) is characterized by one decision center at the top
level and p decision units at the bottom level with the assumption that the decision units in the lower level
are independent of each other and under the control of the upper level. Let fki(x) represents the objective
function of the ith division at the kth level and ckij represent the cost coe�cient of the decision vector xj
for the ith division at the kth level. Thus, in a bi-level decentralized organization, k =1 represents the upper
level and k =2 represents the lower level, and i=1; 2; : : : ; sk . s1 = 1 indicates that there is only one decision
unit at the upper level and s2 = s indicates that there are s decision units at the second or lower level. The
equations for the BLDPP can now be represented by

Max
x11

f11(x)=
∑
j

cT11jxj; (upper level) (12)

where x21; x22; : : : ; x2s solve



Max
x21

f21(x)=
∑

j
cT21jxj

: : :
Max
2s

f2s(x)=
∑

j
cT2sjxj

(lower level) (13)
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s:t:
∑
∀k; i; j

Akixj6b;

k =1; 2 and i=1; 2; : : : ; sk ;

xj¿0; j=1; 2; : : : ; n:

where j=1; 2; : : : ; n represents the jth decision variable, the constraint set is represented by X , and j= s1+s2.
The decision variable xj, for j=2; 3; : : : ; n is the decision of the separate decision unit of the second level.
To solve the BLDPP, Anandalingam [1] �rst proposed a procedure based on the KKT condition. Later,

Anandalingam and Apprey [2] proposed a new approach to the multi-agent system based on the concept of
penalty function. This approach has been used to solve a con
ict resolution problem of an international river.
Based on Anandalingam’s structure, Wang et al. [20] recently provided a method for generating non-dominated
solutions for a multi-objective, three-level decentralized system.
In this investigation, the fuzzy approach [19] will be used to solve this problem. Eqs. (12) and (13) will

be solved by a procedure of supervised search. First the degree of satisfaction of the upper-level is transferred
to the lower level. The lower level solves its problem based on the demand of the upper level. To obtain the
initial values of the degrees of satisfaction in terms of fuzzy membership functions, we solve the following
optimization problems independently:

f∗
ki =fki(x

∗
ki)=max

x∈X
fki(x); ∀k and i:

Then,

f′
ki=minx∈X

fki(x); ∀k and i:

Assume that the tolerance vector is given by the upper-level DM. The membership functions �x1(x1) and
�ki(fki(x)) can be formulated.
In a similar manner, the lower-level DMs can also formulate their degrees of satisfaction. Observe that

each division or decision unit at the same level has his or her own objective. In this section, we shall assume
that each decision unit in the same level has equally important objectives, that is, each unit has the same
decision power from the viewpoint of the upper-level DM. Based on max–min (non-compensatory) operator,
the auxiliary model of the lower-level problem is:

Max �

s:t: x∈X ;
�f1(f1(x))= [f1(x)− f′

1]=[f
T
1 − f′

1]¿�;

[(xT1 + p1)− x1]=p1¿�I ;
[x1 − (xT1 − p1)]=p1¿�I ;
�f2i(f2i(x))= [f2i(x)− f′

2i]=[f
T
2i − f′

2i]¿�I ; i=1; 2; : : : ; s

�∈ [0; 1]:

(14)
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For the compensatory model, the above equation can be transformed into:

Max �and = �+ (1− 
)(�1 + �2 + · · ·+ �s+2)=(s+ 2)
s:t: x∈X ;

�f1(f1(x))= [f1(x)− f′
1]=[f

T
1 − f′

1]¿�+ �1;

[(xT1 + p1)− x1]=p1¿(�+ �2)I ;

[x1 − (xT1 − p1)]=p1¿(�+ �2)I ;

�f21(f21(x))= [f21(x)− f′
21]=[f

T
21 − f′

21]¿(�+ �3)I ;

: : :

�f2s(f2s(x))= [f2s(x)− f′
2s]=[f

T
2s − f′

2s]¿(�+ �s+2)I ;

�+ �i61; i=1; 2; : : : ; s+ 2

�; �1; �2; : : : ; �s+2 ∈ [0; 1]

(15)

where the nomenclature has been de�ned before.

Example 3. Consider the following BLDPP [1]

Max
x1

f1 = x1 + y1 + 2y2 + y3;

where y1; y2; and y3 solve

Max
y1

f21 =−x1 + 3y1 − 2y2 − y3

Max
y2

f22 =−x1 − y1 + 3y2 − y3

Max
y3

f23 =−x1 − y1 − y2 + 3y3

s:t: 3x1 + 3y1630; 2x1 + y1620;

y2610; y2 + y3615;

y3610; x1 + 2y1 + 2y2 + y3640;

x1; y1; y2; and y3¿0:

Individual solutions of the top and bottom levels are fT11 = 35 at x
T
11 = (x

T
1 ; y

T
1 ; y

T
2 ; y

T
3 )= (10; 0; 10; 0) or

(5; 5; 10; 3); fT21 = 30 at x
T
21 = (0; 10; 0; 0); f

T
22 = 30 at x

T
22 = (0; 0; 10; 0) and f

T
23 = 30 at x

T
23 = (0; 0; 0; 10) (see

Table 3). Assume that f′
11 =f

′
21 =f

′
22 =f

′
23 = 0. The tolerance for x1 is that the upper-level DM is fully

satis�ed if the values for x1 lie between 5 and 10. The required membership functions can thus be established.
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Table 3
Individual solution for each objective of Example 3

Vertex Objective for each decision unit Note

f1 f21 f22 f23

A(10; 0; 10; 5) 35∗ −25 15 −5 Level 1 optimum
B(5; 5; 10; 5) 35∗ −5 15 −5 Alternative optimum
C(0; 10; 0; 0) 10 30∗ −10 −10 Level 2, division 2 optimum
D(0; 0; 10; 0) 20 −10 30∗ −10 Level 2, division 2 optimum
E(0; 0; 0; 10) 10 −10 −10 30∗ Level 2, division 3 optimum

Modi�ed fuzzy range:
n=1 n=21 n=22 n=23

fn [10; 35) [0; 30) [0; 30) [0; 30)
xn [0; 5; 10] — — —

Note: (1) f1 represents the objective of the upper-level DM; f21; f22, and f23 represent the three DMs of the lower-level.
(2) “∗” represents the optimal objective corresponding to the related divisions of 1st level and 2nd level.
(3) Modi�ed fuzzy ranges are based on the solutions of individual problems. We choose one-sided fuzzy numbers for objectives and

triangular fuzzy numbers for decision variables.

Using Eq. (15), we have

Max �and = �+ (1− 
)(�1 + �2 + �3 + �4 + �5)=5

s:t: x∈X ;

�f11(f1(x))= [f11(x)− f′
11]=[f

T
11 − f′

11]= (x1 + y1 + 2y2 + y3)=35¿�+ �1;

[x1 − (xT1 − p1)]=p1 = x1=5¿(�+ �2);

x1610;

�f21(f21(x))= [f21(x)− f′
21]=[f

T
21 − f′

21]= (−x1 + 3y1 − 2y2 − y3)=30¿(�+ �3);

�f22(f22(x))= [f22(x)− f′
22]=[f

T
22 − f′

22]= (−x1 − y1 + 3y2 − y3)=30¿(�+ �4);

�f23(f23(x))= [f23(x)− f′
23]=[f

T
23 − f′

23]= (−x1 − y1 − y2 + 3y3)=30¿(�+ �5);

�+ �i61; i=1; 2; 3; 4; 5

�∈ [0; 1]:

The above auxiliary compensatory model was solved and the results are: f ∗=(f∗
11; f

∗
21; f

∗
22; f

∗
23)= (31:07;

6:43; 6:43; 6:43) with the optimal satisfaction �and = 0:28 at x∗=(1:07; 7:5; 7:5; 7:5) and with 
=0:5. In addi-
tion, 11 cases for di�erent values of the compensatory parameter 
 were also obtained and the results are listed
in Table 4. The crisp solution is f ∗=(35;−5; 15;−5) with satisfaction �=(1; 0; 0:5; 0) at x∗=(5; 5; 10; 5)
[1].
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Table 4
Results based on the degree of compensation of Example 3

Degree of Degree of satisfaction Solution Objective Note
compensation 
 �and (�) (x1; y1; y2; y3) (f1; f21; f22; f23)

0 0:41 (0) (3:75; 6:25; 8; 75; 6:25) (33:75; 0; 10; 0)
0.1 0:37 (0) (3:75; 6:25; 8:75; 6:25) (33:75; 0; 10; 0) Change of the solution set
0.2 0:34 (0:17) (2:5; 7:5; 7:5; 7:5) (32:5; 5; 5; 5)
0.3 0:32 (0:17) (2:5; 7:5; 7:5; 7:5) (32:5; 5; 5; 5)
0.4 0:30 (0:17) (2:5; 7:5; 7:5; 7:5) (32:5; 5; 5; 5) Change of the solution set
0.5 0:28 (0:21) (1:07; 7:5; 7:5; 7:5) (31:07; 9:28; 17:72)
0.6 0:27 (0:21) (1:07; 7:5; 7:5; 7:5) (31:07; 9:28; 17:72)
0.7 0:25 (0:21) (1:07; 7:5; 7:5; 7:5) (31:07; 9:28; 17:72)
0.8 0:24 (0:21) (1:07; 7:5; 7:5; 7:5) (31:07; 9:28; 17:72)
0.9 0:23 (0:21) (1:07; 7:5; 7:5; 7:5) (31:07; 9:28; 17:72)
1 0:21 (0:21) (1:07; 7:5; 7:5; 7:5) (31:07; 9:28; 17:72)

Note: (1) Werners’ fuzzy “and” operator is �and = 
mini(�i) + (1− 
)(�i �i)=m; 06�61; 06
61, with m membership functions,
i=1; : : : ; m. Here m=5 for the bi-level decentralized programming problem of Example 3.
(2) When 06
60:1; 0:26
60:4, and 0:56
61, the solution is belong to a di�erent set, respectively.
(3) � is the degree of satisfaction for non-compensatory operation, i.e. max–min operation. The compensatory solution and non-

compensatory solution are equal when 
=1.

6. Bi-level decentralized programming problem with unequal goals

In the previous section, the objectives or the goals in the same level are treated as equally important. In
practice, this is not the case. In fact, unequal objectives or goals at the same level are more common. In this
section, a convex combination of the di�erent weights of the objectives will be used to handle the unequal
goals.
Assume that the second level has s decision units or objectives. Assign weights w21; w22; : : : ; w2s to objectives

f21; f22; : : : ; f2s, respectively, where the summation of all the weights are equal to one. Using the weighted
expressions in Eq. (15), we obtain the following new expression for the lower level:

Max �+and = �+ (1− 
)[�1 + �2 + s(w21�3 + w22�4 + · · ·+ w2s�s+2)]=(s+ 2)
s:t: x∈Y ; (16)

where Y represents the constraint set.

Example 4. Consider the same example used in Example 3 except with the addition of weights.
Suppose that the upper-level DM feels that the �rst objective f21 at the lower level is three times more

important than either the second objective f22 or the third objective f23. Also, suppose that the second objective
is twice as important as the third objective at the lower level. Then, the concept of pairwise comparison of
importance of the di�erent objectives can be used and the relative weights can be obtained by the eignvector
method [17]:

A= [aij] =



w21=w21 w21=w22 w21=w23
w22=w21 w21=w22 w22=w23
w23=w21 w23=w22 w23=w23


 =



1=1 3=1 3=1

1=3 1=1 2=1

1=3 1=2 1=1


 ;

where objective i is aij times more important than objective j.
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The desired weights can be obtained by �rst obtaining the eigenvalues from (A − �I)w= 0 and then
solving a set of three simultaneous equations. The weights obtained are: (w21; w22; w23)= (0:59; 0:25; 0:16).
After substituting these weights into Eq. (16), the objective function of the lower-level auxiliary model with
compensation is

Max �+and = �+ (1− 
)[�1 + �2 + 3(0:59�3 + 0:25�4 + 0:16�5)]=5:

This auxiliary problem with the above objective function and the same set of constraints as that listed
for Example 3 was solved and the results are: f ∗=(f∗

11; f
∗
21; f

∗
22; f

∗
23)= (31:73; 8:85; 5:77; 5:77). The optimal

satisfaction level is: �+and = 0:28 at x
∗=(0:96; 8:27; 7:5; 7:5) with 
=0:5. Compared to the solutions obtained

in Example 3, the e�ect of unequal weight is obvious.

7. Multiple level decentralized programming problems

Obviously, the approach can be expanded easily to multiple level decentralized programming problems
(MLDPP), which is composed of a decision center at the top level and several divisions or decision units
at each of the lower levels. It is essentially the multiple level hierarchy decentralized system proposed by
Anandalingam [1]. Fig. 1 illustrates the general structure. This is a very di�cult problem and there exists no
explicit relationships among the decision units at the same level. In this section, the fuzzy approach will be
used to solve the MLDPPs with equal and unequal importance in the goals at the same level. Using the fuzzy
or tolerance nature, this large complicated problem becomes tractable with the fuzzy approach.

Fig. 1. A decentralized hierarchical structure.
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The procedure of compensatory fuzzy approach for MLDPPs is essentially the same as that for BLDPPs.
Assume that there are s decision units at the second level and q decision units at the third level, the objective
functions for this third-level problem with equally important objectives at each level is

�+and = �+ (1− 
)[�1 + �2 + (�3 + · · ·+ �s+2) + (�s+3 + · · ·+ �2s+2)
+ (�2s+3 + · · ·+ �2s+q+2)]=(2s+ q+ 2); (17)

where (�3; : : : ; �s+2) represent the goals of the second level, (�s+3 + · · ·+ �2s+2) represent the decisions of the
second level, and (�2s+3 + · · ·+ �2s+q+2) represent the goals of the third level.
For unequal goals, assuming the weights w21; w22; : : : ; w2s are assigned to objectives f21; f22; : : : ; f2s, respec-

tively, for the second level, and w31; w32; : : : ; w3q are assigned to objectives f31; f32; : : : ; f3q, respectively, for
the third level. Then, the objective function for the third-level auxiliary model can be represented as

�+and = �+ (1− 
)[�1 + �2 + s(w21�3 + · · ·+ w2s�s+2)=2 + s(w21�s+3 + · · ·+ w2s�2s+2)=2
+ q(w31�2s+3 + · · ·+ w3q�2s+q+2)]=(2s+ q+ 2); (18)

where (�3; : : : ; �s+2) represent the goals of the second level, (�s+3 + · · ·+ �2s+2) represent the decisions of the
second level, and (�2s+3 + · · ·+ �2s+q+2) represent the goals of the third levels.
Eqs. (17) and (18) are the auxiliary objectives for the third-level, and their constraint sets should include

the decision information from the �rst and the second levels as discussed previously. The approach can be
extended easily to kth level decentralized programming problems, with k¿4. If the current solution is not
satisfactory, interactive iteration can be added to modify the degree of satisfaction until a satisfactory solution
is obtained.

8. Conclusions and discussions

The fuzzy approach is an e�ective and powerful compromise technique for solving multiple level program-
ming problems. The advantage of this approach is that it exploits the inherent vagueness and uncertainty of a
large multiple hierarchical system so that this system becomes tractable and, in a way, much more simpli�ed.
Because of this exploitation of the vagueness and also because we use membership function to represent the
degree of satisfaction, the very complex large decentralized multiple level problems can be solved e�ectively
by this approach
Although this and the earlier paper [19] have shown the e�ectiveness of the fuzzy approach, only a start

has been made. Many areas need to be explored and developed in this direction. For example, only the com-
pensatory operator proposed by Werners [24] has been used. There are many other compensatory aggregators
to be investigated. The concept of ordered weighted averaging aggregator due to Yager [26] appears to be a
promising one. Another direction is in the development of more e�ective interactive iterative procedure.
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